

SPCD, October 2016

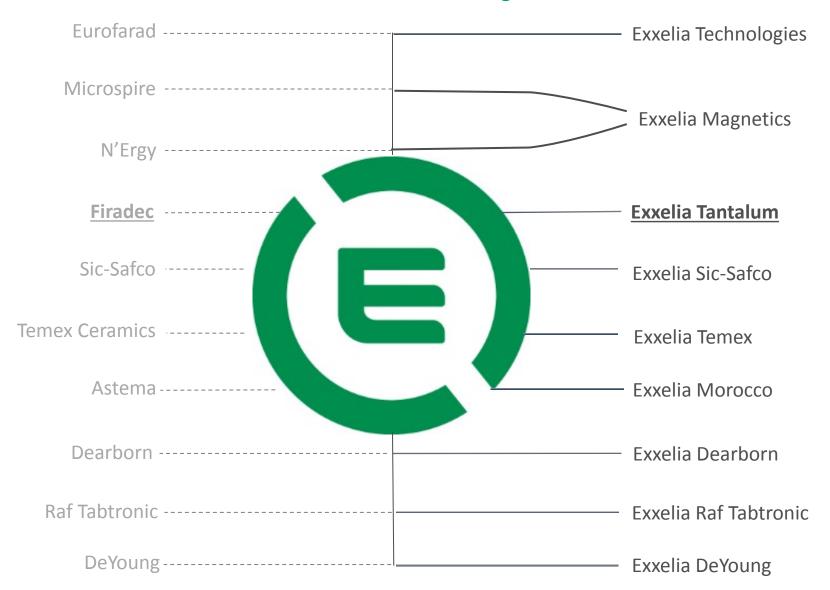
Content

General presentation about Exxelia and its tantalum entity (ex-FIRADEC)

Advantage of tantalum for this particular application

Why was tantalum out of popularity for this application?

Why it will change



Designer and manufacturer of electrical and electromechanical innovative, high-tech and high-reliability solutions.

Exxelia Today

4 SBUs - 10 Product Lines

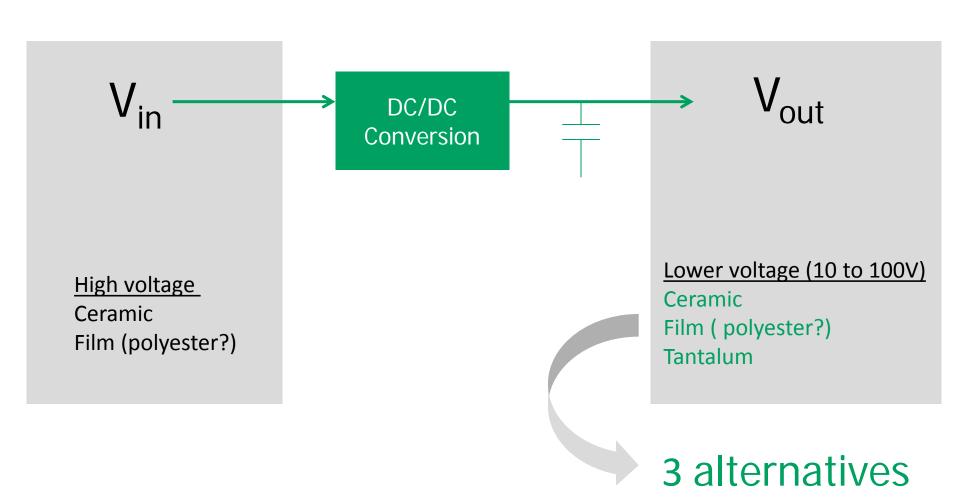
STRATEGIC BUSINESS UNITS Film & Electrolytic Capacitors Electromechanical **Solid Capacitors** Magnetics **Solutions** 27% 29% 22% 22% PRODUCT LINES **Wound Magnetic** Film & Mica **Tantalum** & FTC **BRANDS** Exxelia Microspire Exxelia Tantalum Exxelia Dearborn Exxelia Technologies Exxelia N'Ergy Exxelia Sic-Safco Exxelia Technologies Exxelia Maroc Exxelia RAF Tabtronics Exxelia Temex Exxelia Technologies Exxelia Vietnam

Exxelia Tantalum Product Portfolio

Solid Tantalum Capacitors

Why and how to use tantalum capacitors in Satellites secondary DC Bus?

General presentation about Exxelia and its tantalum entity (ex-FIRADEC)


Advantage of tantalum for this particular application

Why was tantalum out of popularity for this application?

Why it will change

Main general DC/DC converter on a Satellite

PROs & CONs of each technology

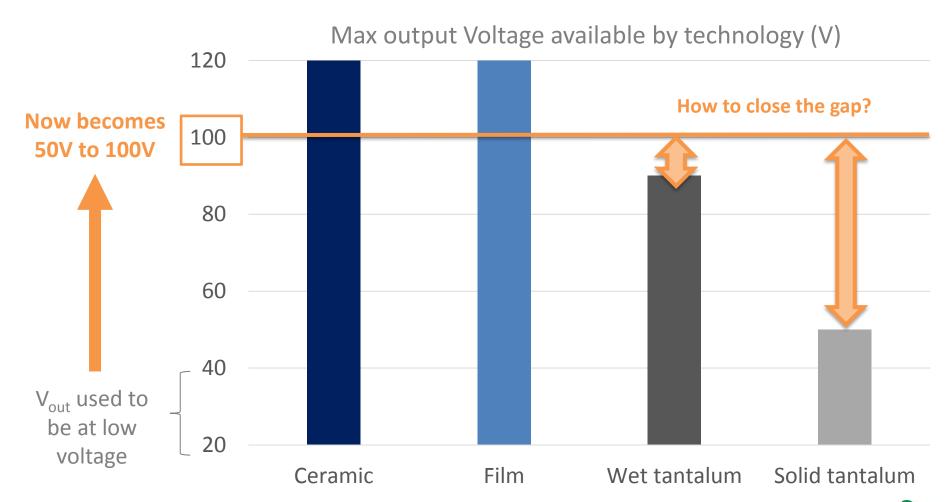
Caracteristics/ Technology	Ceramic	Film	Solid Tantalum	Wet tantalum	
ESR	+	++	_		
Capacitance/ volume	-	-	+	++	
Ripple current	+	++	-	-	
Weight of the function		++			
Price of the function	-	-	+	++	

Main Advantage of Tantalum

(all values @50V)	Ceramic	Film	Solid	Wet
			tantalum	tantalum
Max capacitance	3.3µF	27μF	47μF	750μF
Volume to achieve 10mF (mm³)	881 664	1 980 000	160 325	35 412
Capacitance /volume (µF/cm³)	11.3	5.03	62.14	281.3

Why and how to use tantalum capacitors in Satellites secondary DC Bus?

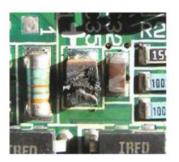
General presentation about Exxelia and its tantalum entity (ex-FIRADEC)


Advantage of tantalum for this particular application

Why was tantalum out of popularity for this application?

Why it will change

Why was tantalum unpopular these past years?



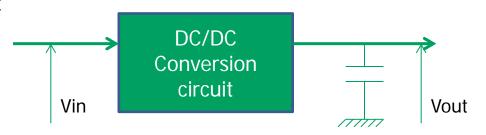
Why was tantalum unpopular these past years?

Failure mode of MnO2 solid tantalum could lead to open mode with thermal ignition of the capacitor

Why and how to use tantalum capacitors in Satellites secondary DC Bus?

General presentation about Exxelia and its tantalum entity (ex-FIRADEC)

Advantage of tantalum for this particular application


Why was tantalum out of popularity for this application?

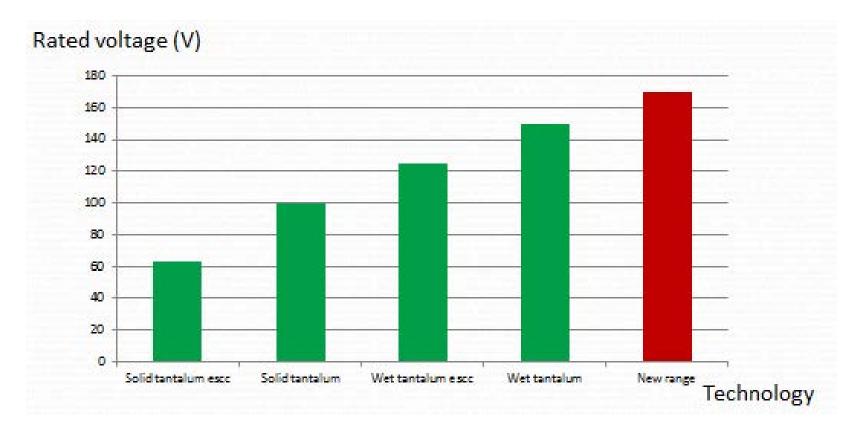
Why it will change

WT 82: High voltage wet tantalum

Tendancy in the market

Vout increased over the time.

More and more commonly Vout≥50V and now


Oftenly Vout=100V

Need for capacitor at minimum 170V due to the derating in space application.

WT 82: High voltage wet tantalum

Solid tantalum esco: Up to 63V

Solid tantalum out of escc: Up to 100V


Wet tantalum escc: Up to 125V

Wet tantalum out of escc: Up to 150V

New range (WT82): Up to 170V

WT 82: High voltage wet tantalum

First values made: 47µF 160V in D case

47µF 170V in D case

82µF 160V in D case

82µF 170V in D case

With high reliability levels in order to be used in space programs in the future.

WT82: Tests results at 170V

Operating life test at 70°C under rated voltage during 1000 hours $82\mu F$ 20% 170V D case

	Before life test			After life test			
	Cap.(μF)	TgD.(%)	Lc.(μA)	Cap.(μF)	dC/C(%)	TgD.(%)	Lc.(μA)
Limits	65.6/98.4	40	5		10	60	10
Min.	87,93	7,64	1,02	81,73	-7,66	6,96	0,56
Max.	89,09	9,23	1,23	82,85	-6,84	8,14	0,62
Moy.	88,62	8,52	1,10	82,22	-7,21	7,40	0,58
Std	0,387	0,46	0,061	0,341	0,27	0,41	0,017

Electricals parameters of capacitors are stable after 1000h under U_R at 70°C. The decreasing of capacitance is about 8% of initial value. No defect was appeared during the test.

WT82: Failure rate calculation

FR = $3 \times \pi T \times \pi V \times \pi C \times \pi E \times \pi q \times 10^{-9} / hour$

Influence of the temperature:

$$\pi T = \exp(1.8x(T/70)^2)$$

Let's consider the worst case: T=70.

$$\pi T = \exp(1.8) = 6.05$$

Influence of the capacitance:

 π C = 1,2 at 82 μ F

Influence of surrounding conditions:

Satellite in orbit: $\pi E = 0.5$

Satellite launching: $\pi E=20$

Influence of the voltage:

 $\pi V = \exp\left((Up/Ur)^2\right)$

In space, if derating = 0,6, we have:

 $\pi V = \exp(0, 6^2) = 1,43$

Influence of the qualification:

 $\pi Q = 2$

WT82: Failure rate calculation

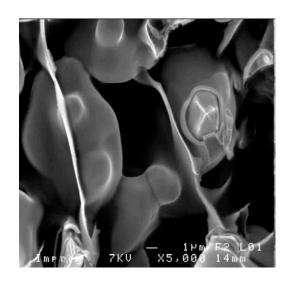
Best case: satellite in orbit

 $FR = 31.10^{-9}$

MTBF = 32 M hours

Worst case: Launcher

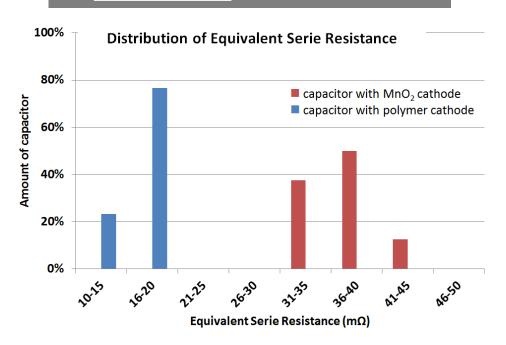
 $FR = 12,4.10^{-7}$


MTBF = 806 k hours


CTP21

Internal structure

Mn02 Polymer


Thermal ignition:

Does not happen with polymer

CTP21

Lowest ESR on the market

⇒ <u>Twice less ESR</u> compared to the same component in MnO₂ technology

High energy density

Typical capacitances
- 16V → 560µF

-100V — → 22µF

⇒ Allows electronic designs to be smaller

They're stackable!

CTP42

- \Rightarrow Twice as much capacitance
- ⇒ Half the ESR
- \Rightarrow Same implantation on the PCB

To Conclude...

Our goal is to provide you solutions for space designs of the future

Thank you for your attention

